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We investigate the modal characteristics of solid-core Bragg fibers with complex refractive index profiles using Galerkin’s 
method under the scalar linearly polarized (LP) mode approximation. The imaginary part of the electric field results in wave-
front distortion which is critically dependent on the imaginary part of the refractive index. The optical gain is calculated for 
three physically acceptable values of the imaginary part of the refractive index. As the operation wavelength increases, the 
gain decreases because the optical power confined to the core decreases. 
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1. Introduction  
 
Bragg fibers are light guides that consist of a low-

index central region (serving as the core) that is 
surrounded by concentric layers of alternate high and low 
refractive index materials. Although in the first proposal [1] 
the refractive indices of the cladding bilayers were 
assumed to be higher than that of the core, Bragg fibers 
could also be designed such that only one of the cladding 
bilayers has a refractive index higher than that of the core 
[2]. In either case, the refractive index periodicity in the 
cladding spawns a photonic bandgap and thus, if the 
frequency of the incident light falls within the bandgap, it 
can be confined within the core of this fiber [3]. 

Bragg fibers have attracted increasing attention due 
mainly to their large photonic bandgaps and 
omnidirectional reflectivity [4]. Rapid progress in infrared 
energy transmission [5], external reflection [6], and optical 
detection [7] has been made in recent years, with stress on 
large transmission bandwidth and low propagation loss. 
Reduction of propagation loss is of primary interest since 
in future Bragg fiber laser and amplifier applications, 
background loss will severely limit the net gain. The first 
report on a solid core Bragg fiber appeared in 2000 [8] 
which aim to achieve zero group velocity dispersion (GVD) 
at λ=1.06 μm corresponding to the emission wavelength of 
Yb+3- doped fiber lasers. A study of non-linear pulse 
propagation in such fibers has recently been reported in 
the literature [9].         

The main characteristic in a fiber laser or amplifier is 
the gain along the length of the fiber. Except for models 
based on rate and propagation equations, an alternative 
method is to analyze optical fibers whose refractive-index 
profile is described in terms of a complex function. Then, 

the gain can be described by the imaginary component of 
the complex propagation constant, which is critically 
dependent on the imaginary component of the complex 
refractive-index profile. Some approximate or numerical 
methods have been presented [10-12] for evaluation of the 
propagation characteristics of such fibers. Moreover, it has 
been shown that the use of ytterbium-doped photonic 
bandgap fibers as fiber-lasers or amplifiers lead to 
improved features of amplification properties with respect 
to standard step-index fibers [13].  

In this work, we use a scalar approximation to the 
Helmholtz equation based on Galerkin’s method to 
investigate the guidance of optical waves in solid-core 
Bragg fibers with complex refractive index profiles (RIP). 
The modal properties are discussed and a noticeable 
phenomenon of wave-front distortion is demonstrated. The 
spectral characteristics of gain are also studied for three 
physically acceptable values of the imaginary part of the 
RIP. 

 
 
2. Mathematical model and numerical  
       approach 
 
Under the weakly guiding approximation, the scalar 

Helmholtz eigenvalue equation, for a given azimuthal 
mode number m, can be written in polar coordinates as [14] 
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where E=E(r) represents the radial variation of the modal 
field, k is the free-space wavenumber and β is the 
propagation constant. The scalar wave-equation (1) is 
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known to be a good approximation to the full-vectorial 
treatment for microstructures with small refractive index-
contrast, which is what we consider here. The ‘real’ RIP 
nr(r) of a solid-core Bragg fiber is expressed by a staircase 
function: 
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where rco the core radius, a  and b the up-doped and 
down-doped layer thickness, respectively, Λ= a +b the 
radial multilayer period and  m=1,2,3…             

In order to investigate a structure with gain, we 
assume, instead of Eq.(2), a complex form of the RIP:   

 
                                                     

( )= ( ) ( )r in r n r in r+                     (4) 
 
The imaginary part ni of RIP can be considered as a 

function of pump/signal wavelength and dopant profiles of 
active material [10]. For simplicity, we assume a constant 
ni throughout this paper. Consequently, the scalar 
Helmholtz eigenvalue equation becomes non-Hermitian, 
meaning the eigenvalues may be complex. We thus expect 
the propagation constant to have both real and imaginary 
part, writing β= βr+iβi.  If βi is positive the solutions will 
decay exponentially corresponding to loss in optical 
power, whereas a negative value of βi results in solutions 
increasing in power along the fiber length, corresponding 
to gain.  

We apply Galerkin’s numerical method in cylindrical 
coordinates [15, 16] to find the modal field of the Bragg 
fiber with complex refractive index profile. The complex 
modal field is expanded in a set of associated Laguerre-
Gauss basis functions  
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( )m
iL R  are the associated Laguerre polynomial and N  is 

the number of basis functions used. The normalized 

parameter R is defined as 2 2R r /σ α=  where α is the 
core radius and σ is an arbitrary positive number that 
affects the convergence, accuracy and computational time 
[16]. Then, Eq.(1) is transformed into a matrix eigenvalue 
equation for the propagation constant as 
 

          [ ][ ] [ ]2H A β Α=                      (7) 
where the elements of the complex Ν Ν×  matrix H, are 
given by 
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The eigenvector [ ]Α  is a column vector that contains 

the complex coefficients ia . In our calculations, the 

parameter σ is chosen equal to core radius α of the Bragg 
fiber and the complex eigenvalue problem is solved using 
optimized EISPACK matrix eigensystem routines [17]. As 
a final result, the complex propagation constant β of a 
guided mode is obtained and the gain of the propagating 
signal power, in decibels per meter, is given by g (dB/m) 
=20 log (e) Im(β). 

 
 
3. Modal characteristics of solid-core Bragg  
       fibers with gain 
 
The design we have investigated is a depressed index 

solid-core Bragg fiber [8] having a core radius rco= 6.7 μm 
with refractive index nco=1.446, and a periodic cladding 
with layers of thicknesses a = 2b=1.2 μm having 
refractive indices nH = 1.459, nL = 1.450 (at 1.06 μm), 
respectively. Justification for the choice of these 
parameters is given in Ref. [18]. This fiber has a unique 
mode LP01 guided at this wavelength with zero GVD. The 
computed electric field of this unique mode LP01 together 
with the ‘real’ RIP of the considered fiber is plotted in Fig. 
1. As it is expected, the modal field is zero at the 
core/cladding interface and at the transitions from low to 
high refractive index region and decays with the radial 
distance similar to a ‘sinc’ function.  
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Fig.1. Refractive   index   profile  and  computed  electric 
field of real refractive  index solid-core Bragg fiber. The 

field has been normalized to its maximum. 
 

Fig. 2 (a) and (b) show the real and imaginary part of 
the modal field LP01, respectively, for three physically 
acceptable values of the imaginary part ni  at wavelength 
λ=1.06 μm. As it is seen, the imaginary part of the modal 
electric field is much smaller than the real part because of 
the small ni. Furthermore, the imaginary parts of the modal 
fields in Fig. 2 (b) are overlapped after multiplication by 
10 for ni =10-4 and by 100 for ni =10-5. An apparent 
characteristic of the imaginary part of the modal field is 
that the field reaches its minimum near the edge of the 
fiber core. Moreover, both real and imaginary parts of the 
modal field reflect the symmetry of the periodic multilayer 
structure.  

 

 
 

(a) 
 

 
 

(b) 
                         

Fig. 2.  Real part (a) and Imaginary part (b) of the modal 
field LP01  of   complex  refractive  index  Bragg  fiber  at 

wavelength λ=1.06 μm. 
 

Fig. 3 shows the phase distribution in the fiber’s cross 
section for the three different values of ni at λ=1.06 μm. 
This phase can be considered to be the wave-front of the 
fundamental mode LP01. It is well known that the wave-
front is a plane for fibers without gain, but when an 
imaginary part of the refractive index is introduced, the 
wave-front is distorted. We found that the phase distortion 
is principally dominated by the imaginary part of the 
refractive index ni. Moreover, as it is expected, phase-
singularities are observed at the core/cladding interface 
and at the transitions from low to high refractive index 
region. 

Fig. 4 shows the gain in dB/m, as a function of 
wavelength for the three different values of ni. As it is 
seen, when the gain corresponding to ni =10-3 is divided by 
10 and the gain corresponding to ni =10-5 multiplied by 10, 
the curves are overlapped and therefore the gain is 
analogue to ni. Furthermore, the gain decreases as the 
operating wavelength increases because the optical power 
confined to the core decreases as the wavelength increases 
[19].  

 

                        
                              
Fig. 3.  Radial phase distribution at λ=1.06 μm for three 

different values of ni.    
                         

 
                     

Fig. 4.  Gain versus operating wavelength. The gain has 
been divided by 10 for  ni=10-3  and multiplied by 10 for 
ni=10-5 so  that  the gain-curves for the three values of ni 

are overlapped. 
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4. Conclusions  
 
We investigated the propagation characteristics of 

single-mode solid-core Bragg fibers with complex 
refractive index profiles applying Gelerkin’s method under 
the well-known scalar linearly a polarized (LP) mode 
approximation. The gain is calculated by the imaginary 
component of the complex propagation constant, which is 
critically dependent on the imaginary component of the 
complex refractive-index profile. The imaginary part of 
the electric field results in wave-front distortion of the 
propagating mode in the Bragg fiber with gain. It can be 
assumed that the modal field is a combination of some 
normal modes of the corresponding fiber without gain and 
therefore, induces a wave-front distortion. The optical gain 
is calculated for three physically acceptable values of the 
imaginary part of the refractive index and its wavelength 
dependence is examined. As the operating wavelength λ 
increases, the gain decreases because the optical power 
confined to the core decreases. 
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